To overcome harmonic structure distortions of complex tones in the low frequency range due to the frequency to electrode mapping function used in Nucleus cochlear implants, two modified frequency maps based on a semitone frequency scale (Smt-MF and Smt-LF) were implemented and evaluated. The semitone maps were compared against standard mapping in three psychoacoustic experiments with the three mappings; pitch ranking, melody contour identification (MCI) and instrument recognition. In the pitch ranking test, two tones were presented to normal hearing (NH) subjects. The MCI test presented different acoustic patterns to NH and CI recipients to identify the patterns. In the instrument recognition (IR) test, a musical piece was played by eight instruments which subjects had to identify. Pitch ranking results showed improvements with semitone mapping over Std mapping. This was reflected in the MCI results with both NH subjects and CI recipients. Smt-LF sounded unnaturally high-pitched due to frequency transposition. Clarinet recognition was significantly enhanced with Smt-MF but the average IR decreased. Pitch ranking and MCI showed improvements with semitone mapping over Std mapping. However, the frequency limits of Smt-LF and Smt-MF produced difficulties when partials were filtered out due to the frequency limits. Although Smt-LF provided better pitch ranking and MCI, the perceived sounds were much higher in pitch and some CI recipients disliked it. Smt-MF maps the tones closer to their natural characteristic frequencies and probably sounded more natural than Smt-LF.
Loading....